skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sammartano, Alessio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Each connected graded, graded-commutative algebraAof finite type over a field$$\Bbbk $$ k of characteristic zero defines a complex of finitely generated, graded modules over a symmetric algebra, whose homology graded modules are called the(higher) Koszul modulesofA. In this note, we investigate the geometry of the support loci of these modules, called theresonance schemesof the algebra. When$$A=\Bbbk \langle \Delta \rangle $$ A = k Δ is the exterior Stanley–Reisner algebra associated to a finite simplicial complex$$\Delta $$ Δ , we show that the resonance schemes are reduced. We also compute the Hilbert series of the Koszul modules and give bounds on the regularity and projective dimension of these graded modules. This leads to a relationship between resonance and Hilbert series that generalizes a known formula for the Chen ranks of a right-angled Artin group. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)